

DR-003-2016008

Seat No.

B. Sc. (Sem-VI) (CBCS) Examination

April - 2022

C-603: Chemistry

(Physical & Analytical Chemistry) (New Course)

Faculty Code : 003
Subject Code : 2016008

Subject Code : 2016008							
Time: 2	$\frac{1}{2}$ H	ours]	[Total M	[arks : 70			
Instructi	ons	: (1)	There are five questions.				
		(2)	In each question subquestion (a) of all are compulsory.	4 marks,			
		(3)	While subquestion (b) , (c) , (d) each wind options.	th internal			
		(4)	Figures to the right indicate full m	arks.			
1 (A)	Ansv	wer the	following questions:	4			
	(1)	The this	rd law of thermodynamics apply toes.				
	(2)	The act	ivity has been indicated for ideal gas by				
	(3)	Define	: Activity Co-efficient.				
	(4)	For thir	d law of thermodynamics $\lim_{T\to 0} \Delta S =$	-			
(B)	Ansv	wer any	one in brief of following:	2			
	(1)	Calculat	e ionic strength of 0.001M k ₂ SO ₄ solutio	n.			
	(2)	Explain	Nernst heat theorem.				
(C)	Ans	wer an	y one in detail of following:	3			
	(1)		the mathematical form of third law of lynamics.				
	(2)	Write a	note on Residual Entropy.				
DR-003-20	1600	8]	1	[Contd			

	(D)	Answer any one of foll	owing:	5		
		` /	ion of absolute entrophy as with related equation.			
		(2) Discuss EMF methor Co-efficient.	d for determination of activity			
2	(A)	Answer the following question:				
		(1) What is the value of Ecell at equilibrium state?				
		(2) The Salt bridge in th	e electro chemical cell serves to			
		(3) The emf, equation to	calculate ΔG^0 is			
		(4) What is the standard	cell potential of Concentration cell	?		
	(B)	Answer any one in brie	ef of following:	2		
		(1) Define : (a) Sparingly	soluble salt.			
		(b) Salt-brid	ge			
		(2) Write short note on	Liquid Junction Petential.			
	(C)	Answer any one in det	ail of following:	3		
		(1) Derive the equation of	of emf for gas concentration cell.			
		(2) Explain EMF method number.	for the determination of transport			
	(D)	Answer any one of foll	owing:	5		
	(1)	Derive an equation of EMF for aconcentration cell with transference with LJP.				
	(2)	Explain determination of ionic product of water by EMF measurement.				
3	(A)	Answer the following questions:				
		(1) Partial molar property	applicable tosystem.			
		(2)error is the me	ost serious error.			
		(3) Define : Deviation.				
		(4) Chemical potential de	pends on which factors ?			
	(B)	Answer any one in brief of following:				
		(1) Explain accuracy with	n suitable example.			
		(2) Describe Henry's law	with it's equation.			
DR-0	003-20	16008]	2 [Cont	d		

	(C)	Answer any one in detail of following:	3				
		(1) Explain Q-test with example.					
		(2) Derive Gibbs -Duhem equation.					
	(D)	Answer any one of following:	5				
		(1) Explain method for minimization of errors.					
		(2) Explain intercept method for the determination of partial molar properties.					
4	(A)	Answer the following questions:	4				
	(1)	For paper chromatography stationary phase is					
	(2)	Which chromatography is used for softening of water ?					
	(3)	Define: R _f value					
	(4)	Define: stationary phase					
	(B)	Answer any one in brief of following:					
	(1)	TLC is superior than paper chromatography, why?					
		(2) Give classification of chromatography.					
	(C)	Answer any one in detail of following:	3				
		(1) Explain characteristics selection of adsorbent.					
		(2) Write note on two dimensional paper chromatography.					
	(D)	Answer any one of following:					
		(1) Write note on adsorption column chromatography.					
		(2) Explain in detail GLC Technique.					
5	(A)	Answer the following questions:	4				
		(1) Why saturated calomel electrode is more useful?					
		(2) Which gas gives blue colour with startch paper					
		(3) Which electrode is used as indicator electrode in pH metry titration?					
		(4) Give chemical formula of magnesia mixture.					
(B)		Answer any one in brief of following:					
		(1) Explain "common effect" in short.					
		(2) Explain principle of potentiometry method.					
DR-	-003-2	016008] 3 [Contd	l				

- (C) Answer any one in detail of following:
 - (1) Explain separation of Co_3^{-2} , So_3^{-2} and S^{-2} in qualitative analysis.
 - (2) Explain $FeSo_4 \rightarrow KM_nO_4$ redox titration by potentiometry.
- (D) Answer any on of following: 5
 - (1) Explain pH metry method determine dissociation constant of weak electrolyte.
 - (2) Discuss the Argentometric titration by Potentiometry.